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THE PRESSURE OF A SYSTEM OF STAMPS ON AN ELASTIC HALF-PLANE UNDER 
GENERAL CONDITIONS OF CONTACT ADHESION AND SLIP* 

E.L. NAKHMEIN and B.M. NULLER 

The contact interaction of an elastic half-plane and an arbitrary system 
of coupled and partially or completely detached stamps is considered. 
The problem is reduced to a combined Dirichl‘et-Riemann boundary value 
problem /l/ and is solved by quadratures. New modifications of the method 
and problems occurring in tasks with two and more slip sections are 
discussed; analogous problems with one slip section were studied earlier 
/2/. Fal'kovich's problem /3/ is investigated in a broadened formulation 
as an illustration. 

1. Let L, = (ak,bg>, k = I,&..., 1 be an open, half-open, or closed interval and Mk = 
[pkr 4. k = 1, 2, . . ., m, segments of the real axis y=o on which the stamps have, respect- 
ively, slipping contact and total adhesion with the elastic half-plane --00<2<w,y~0; 
n,<b,<. . . < bt, PI< Ql< . . . < qrn. We determine the shape of the stamps, the tangential 
clearance on M,, the separation-free abutment and non-intersection of the stamp and the half- 
plane by the boundary conditions 

u'=t+,'(z), XEIWM; v‘=v~'(x), XELU M; (1.1) 

7XY = 70 (x), 2 E L; U” = 7,” = 0, x E s; L n M = 0 
U” < 0, 5 c L; v (2) - v. (z) > 0, 5 E S’ 

Here S is the complement LljM to the real axis, S' are the selections outside 
L U M. on which the stamp base with the shape Vo(X) is not contiguous to the half-plane; 
the given functions satisfy the HBlder condition; the interval L1, = [at,bk] (L, = (air, bk)) is 

l Prikl.Matem.Mekhan.,52,2,284-293,1988 
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closed (open) if sections of the free boundary S of the half-plane (the adhesion sections M, 
and M),,) adjoin it from two sides; the half-open intervals Li, -=(a,,b,j or L, = I%, 6,) 
correspond to M, being adjacent to L R only on the left for g1 = at or on the right for 
bk = Pj* We give the tangential clearance Xk = U (b,) -- U(ak) in each open interval (a*, b,) 
We apply a normal force Yk to each completely stripped stamp occupying the segment ~ah.,btj, 
to each stamp having one or several adhesion sections M,,ikf~+~,+.. and perhaps several slip 
sections, one tangential force Xj’ and one normal force Yj'. The total number of parameters 
Xk, yk, x,', y,' obviously equals 1 $- 2m -a’- Za", where a' is the number of half-open, 
and a" the number of open intervals L,. 

We will seek the solution of the problem in the form /4/ 

b, - izzy = Qt (2) - cft (5) + (2 - Z)@' (z), 2 = 5 + iy 

2p (u’ + iv’) = v3-P (2) + @ (f) - (2 - Z)&qT) 
Cp (2) = ‘/,~,” 4- 2ipP (X + I)-’ - Fe”0 (27~2)~1 + 0 (z+), 
z-+cQ 

(1.2) 

where F and e are the magnitude and slopetothe OX axisoftheprincipal vector 
forces Yk, Xl’, Y,‘, 0 < 8 < Zn, Uxrn is the constant component of the stress field 
the rotation at infinity. 

of all the 
and Em is 

substituting (1.2) into (1.11, we obtain the combined Dirichlet-Riemann boundary value 
problem /1/ for a piecewise-analytic function with the boundary lines L U M 

ImcD*(z)=f*(2), /*(x)=(x f 1)-1[2pu,‘(z)+*(s)j (1.3) 
1;* (I) = XT0 (I), t- (.z) = z,(x), x E L 

y+zk+ x@,- (4 = g (4, g (4 = 211 id, (2) + iv@’ (.2)1, P.4) 

The canonical solution X(Z) of the homogeneous problem (1.3) and (1.4) has the form 

X(z) = 2 (z) ei*@) i (z - bj)-ai ‘ii (z - cJ8-f 
j=l i=r 

(1.5) 

z (z) = fi (z - pp)-%“Y (z - qa)-WY, y = J!g 
k=1 

21, (z) = & j i’(=) ‘“+g;; h- w + h* (t) - h-(t)] g$- 

Y(z)= fr (z - a,)‘+r - b#*, Y (z)=z’+o(z~-I), 2-P c# 
k-l 

h* (t) = nnkf - arg Z* (t) + j$l aj arg (t - bj)* -I- 

I-l 

j~l&a%(t - ci)*s tELk 

Here n$, ax, 6, f 0 are integers, CL are complex numbers, the slits in the z plane are 
drawn along the real axis in the positive direction, Z(z) is the canonical solution of the 
homogeneous Riemann problem (1.4) in the broadest class of functions integrable at the,.nodes 
Pk. qkr k = 1, 2, . . ., m;J, (z)isthe solution of the Dirichlet problem Re$* (3) = h* (x), 5 E L, 
bounded at the nodes et, bk, k = 1. 2, . . ., 1 and at infinity, which is possible only when the 
following conditions are satisfied 

s h+(t~~~~-(~) ti+dt=O, j=2,2,...,1-1 
I. 

fl.6) 

Allowing SUbStantial arbitrariness in the selection of the nUZber5 pk and ckV the form 
of the solution (1.5) and (1.6) indeed generates the problem of this selection. The exception 
is the case I = I/2/, when the factors (z - ck)-" do not occur in the function X(z) in- 
dependently of the quantity m. 

The general solution of the homogeneous Dirichlet-Riemann problem is constructed in 
/l, 2/ in the form of a sum of linearly independent canonical solutions. Another method is 
applied below, that uses one canonical solution. Different modifications of the method 
enable a general solution to be obtained for a given relationship between the parameters 
1, m, a’ and aa in a most simple and convenient form. 
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The general solution of problem (1.1) and (1.2) will be sought in the broadest class of 
functions m(z) governing the finite local energy of elastic strains of a half-plane in the 
neighbourhbod of the ends of all intervals L,,M 1 and constants at infinity, This corresponds 
to solving problem (1.3), (1.4) in the broadest class of piecewise-analytic functions with the 
boundary lines L U M /5/. However, unlike the Dirichlet and Riemann problems, the canonical 
solution (1.5) and (1.6) ofthecombined Dirichlet-Riemann problem can&t be constructedinthis 
class of functions in the general case. 

Indeed, in the neighbourhood of the ends of L, the asymptotic forms of the functions 
X(Z) have the form 

x (8) = CJ ](z - a#k], z + a%; X(z) = O](z - b,)vk], z + b, (1.7) 

(1.9) 

where 6k = ---'/a (6k = o), if the point + agrees (does not agree) one some point Qj;Ek = --'I, 
@k = o), if the point bk agrees (does not agree) with the point p~+~, Since the function 
arg (2" (-2) [Z-@)I-‘} is constant and a multiple of 2s on L, and ak are integers, the numbers 

#k are also integers. 
Let the function X (2) have integrable singularities at both nodes of L,‘. Thenitfollows 

from the form ofthe.numbers (1.8) that bk = vk = --'I,. Combining Eqs.Cl.81, we obtain the 
relationship ak = ak f er + 1, by virtue of which the numbers ak can be integers only for 
6% = sk. If 61, = i?k = -'i, (Lb = (ax, bk)), then Uk = 0, if & = ek = 0 (& = fffk, b,]), then 
ok =%_ If & = (sk, 6,] or J!& = [a,, bR), then we set pk =--'iar Ye = 0, requiring bounded- 
ness of the solution at the pointbK; here Uk = 0. 

Remark 1. It is best to introduce thesinqularitiesofthe function X(4 symmetrically 
also in problems that have some symmetry in the arrangement of the sections .& and ~43~. 

&aving determined the parameters ok and knowing the mutual arrangement of the sections 
L, and&f,,we find the numbers #k by (1.9) and the difference wk- = ++-nk-, k = 1, 2,..., 8, 
by (1.8). Since the numbers n$ are integers, the differences @-and sums Wk+ = I++ + nk- 
will be simultaneously even or odd for every X-. In addition to the relations mentioned, the 
numbers wk+ and Ck should satisfy conditions (1.6) which according to (1.5) are a system of 
I--1 equations, linearly algebraic in wk+ and transcendental in +. It is sufficient to 
introduce just simple poles and zeros s = CL into (1.5) for the selection of the numbers fit 
in the system by setting 1 fik 1 = 1, k = I,&...,1 - 1. 

Let skr k- I, . . ., 1- 1 be a system of arbitrary continuous curves. Let each curve SR 
lie entirely in theupperhalf-plane (9 > 0) or lower half-plane (y< 0) including the 
appropriate edge Lx+ and L&O of the slit L,, and have ends at the point QE and Sk. Then 
it can be shown that for wl+ = UJ(_ and an arbitrary distribution of the numbers pk 5 +I over 
k and evenness of the numbers wk+ system (1.6) has a solution in the form of integers wk+ and 
complex numbers ck 6? s,. In particular, if the line SK agrees with one of the edges Lk*, then 
ck is a real number. 

Remark 2. It is possible to take Z--1 arbitrary curves instead of l- 1 curves Sk. k= 

1 , . . $9 Z-l and relationships WI+= ml-, and to give an arbitrary number Wk+ of the same even- 
ness as wg- for any one k of the 1 possible ones. 

The existence of a continuum of solutions el, ES, has an explicit mechanical meaning: it 
corresponds to a continual set of the half-plane equilibrium mode for given indices of the 
singularities pk, vk, k = f,..., 1, and the undetermined parameters Xkr yk+ Xj', Y,', Em, uxD)* 

A different kind of constraint is imposed below on the total number fi of zeros 2 = et 
(the numbers BE = 4) . Taking them into account to select some sequence fix, k = 1,2,..., 
1 - 1, and by determining the unknowns w k+ and e, from system (1.61, we obtain the function 
X(z), which, according to (1.5), has the asymptotic form at infinity 

x (2) = 0 (z"), r=21+m-aa’-ciw-2fi-l (1.10) 

2. we will now construct the general solution of the combined problem (1.3) and (1.4). 
Setting 

Q, (2) = x (2) I@,, (2) + @* @)I (2,Q 

where @,(z)is a function analytic on M, we obtain a problem on the jump m,+ (4 - IrD,- (x) = 

g (2) [X' (41-1, x Cz M, from (1.41, whose solution has the form 
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since m, (z) = 0 (z-l), z -+ m, from (2.l.) and the condition CD (z) = 0 (1)3 z-co, it follows 
that r> -1, which means that by virtue of (1.10) the number of zeros p isbounded (E {x} is 
the integerpart of 2) 

B s< E fVa (21 + m - a" - a")) (2.2, 

Let Imck # 0 for all the zeros z _= cr. Then substituting (2.1) into (1.3), we obtain 
the Dirichlet problem /5/ 

Im(bz*(2)=f2f(r)~ I’z~(~)=f*(2)[Xf(z)l-L-Im(D1(,), r:EL (2.3) 

It is natuxal to assume that the integrable singularities of the function Q (z) are 
radicals by analogy with X(s) (this can be proved rigorously but such a proof is not required 
when we have a uniqueness theorem for solving problem (1.1) and (1.2)). Then, starting from 
12.11 and the asymptotics forms il.l.0) and (1.7) of the function X(Z) that has radical 
singularities at all the nodes akY b, except a' of the nodes bkof the half-open intervals of 
&_r where it is bounded, the solution of problem (2.3) must be found in the class of functions 
integrable at the mentioned a' nodes bp and finite in the remaining 31 -a' nodes of the 
contour L under the additional condition Qe (2) = 0 (zf), z -+ 00. 

Taking into account that this solution can have simple poles at fi points +, we obtain 

(2.4) 

Here cc, DR are arbitrary real and AX arbitrary complex constants and for simplicity 
in the writing, the first p numbers C, are taken as zeros; if the first integral of (2.4) 
is different from zero, then the condition X(z) mz (a) = 0(l). Z-P 00, equivalent to the con- 
dition X (z) Y, (z) Z-' = 0 (I), impose5 the following constraint on @: 

B G E t1/a (1 + m - a’)} (2.5) 

which is no less stiff than (2.2); the a' nodes bk are denoted by bk’ at which the function 

x (2) is bounded, vk = 0. In sum, the function a>,(z) contains 'N -2fr -i- rf si- 2 arbitrary 
real constants. Of these 2 (b - p - 1) constants should go to cancellation af the poles of 
the function @(i)- According to (2.11, the requirement that the functions @% (2) + co, b) 
vanish with appropriate multiplicity at l-@-f simple complex or double real poles cb is 
sufficient for this (if SAC is an edge of L L, then the poLes and zeros c~,ESR are doubled at 
this edge because of the formation of a logarithmic singularity for the function V{(G) at the 
point c&. The number l f 2m- a'- 2a” $-2 of the remaining real constants is independent of 

B and equals the number of given kinematic and force parameters ~8, y,,X~',yi', em, u," of 
the initial problem-obtained in Sect.l.. 

Therefore, the M constants (2.4) can be found from the system of N linear algsbraic 
equations; the matrix elements of the system corresponding to the force and kinematic factors 
are calculated, as usual /4/, by integrating the contact stresses and the boundary displace- 
ments. By virtue ofthelinear independence of the functions (2.4) multiplicity of these N 
constants and by virtue of the uniqueness of the solution of the elasticity theory problem 
(1.1) and (1.2), the determinent of the system is different from zero and it has a unique 
solution. An analogous result is also obtained on combining several stamps into one or for 
another constraint on their degrees of freedom. 

Problem (l.lf, (1.2) can be solved in a narrower class of functions, with finite stresses 
at any N1 nodes, by starting from (1.21, (2.1), equating the stress intensity factors at these 
nodes to zero, the obtaining N, conditions connecting the given functions (1.1) and all the 
parameters aI, b Ir. - ., Qmr Xk3 Yi,. . ., Xm', em, (I=, that were independent earlier. 

Let us examine modifications of the selection of II( and &. The representation Iv= 
31+ 2m -ct'--22oc*- zg shows that the number of unknowns in (2.4) diminishesas the number of 
zeros $ grows, becoming a minimum for @= f-i. Iiowever, conditions f2.2) and E2.5) can, an 
the one hand, hinder an increase in $3 and on the other, complicate the search for complex 
zeros, (as compared with the allowable real poles eX} and the subsequent calculations. If 
the constraint ImCkfO for pk= -4 is removed, then the solution of the homogeneous 
Dirichlet problem (2.3) with given double real poles Ck 6 &* is not expressed in elementary 
functions (2.4) but in quadratures or is reduced to the solution of two additional systems of 
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equations of the type (1.6); 
two so that f*(z)=O,z~Lk 

the inhomogeneous problem (2.3) should here be separated into 
for X* (ck) = 0. 

Following /I/ it is possible to set $k= -~,QE Lk* for all k and without reducing the 
Dirichlet-Riemann problem to the Dirichlet problem, construct the solution in the form of a 
sum of canonical linearly independent solutions (1.5). In this case the system contains N= 
z+zm-- a'--Zu*+2, i.e., the minimum of unknowns, but approximately ff~N~ equations of the 
type (1.6) must additionally be solved. Therefore, each modification has its advantages and 
disadvantages in different cases. 

3. As an example we consider the Fal'kovich problem /3/ in a more general formulation. 
Let the half-plane adjoint a flat stamp having two symmetric slip sections L, = I-es -&), L, = 

(b, al and one adhesion section without tension MI = [--b,bf. Then 

a, = ---a, bl = p1 = --b, a, = q1 = b, b, = a, a’ = 2, 
a” = 0 

(3.1) 

z = 2, m = 1, u,,’ (x) = vo’ .(s) = z. (x) E 0, X,’ = F cos Br 
Y,‘=Fsinf& j3\<1 

Unlike in /3/, here X,‘+O 
0) = 0, 

and the absolute stability condition for a crack r-(-&b, 
is removed, considerably simplifying the problem. 

By virtue of (3.1) we have in the canonical solution (1.5) 

2 (z) = (z + b)-‘l:+iy (Z - b)-‘h-W, arg Z* (3) = --s (2) - 
nmj% 

(3.2) 
x E L, 

s (z) = y In f (z + b)-’ (x - b) 1, ml* = 1, %+ = 8, = ez = 0, 
m *- = 2, BI = 6, = --‘I, 

Taking account of Remark 1, we set IL, = Va = 0; ps =vx = --‘is. Hence and from (1.8), (1.9), 
(3.2) and taking Remark 2 into account, it follows that 

a, = aB = or = zul- = 0, 0, = 1, w*+ = +&.- = -2 (3.3) 

Of the two possible modifications fi =O and fi = 1 of the solutions (2.11, (1.51, 
we consider the first. Let c, = c E L,*, pa = 1, arg (z-c)* = q [I + U(x - c)l, where U(z) is 
the Heaviside unit function. Then we have according to (3.1)-(3.3) 

Y (2) = l/(3 - a’) (8 - P), Y+ (t) = --I (-l)jY, (t), t E 

L,; Y, (t) = V’fd - t”) (t’ - ba) 

Evaluating the first integral in (3.4) /2/, we obtain 

Substituting (3.1)-(3.5) into (1.5), we obtain 

x (2) = (2 - c)-l (3 - P)&(Z) 

After analogous substitutions (1.6) takes the form 

(3.4) 

(3.5) 

(3.6) 

and can be written in Legendre elliptic integrals of the first kind 

mK (k') + P (q, h') - 2yK (h) = 0, X = u-lb, R’ = y-1-_ (3.7) 
q = arcsin I(8 - P)*fl (Z - p)-%], h E (0, 1)’ 

where K(h) is the complete and F (tl, A) the incomplete integral. 
Inverting the function F(q,h’) we obtain an explicit expression for c in terms of n 
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and h from (3.7) 

c = a r/l - h’% sn2 (T, A'), T E T (n, h) = 2yK (I) - nK (A’) 

Here sn (T,h) is the Jacobi elliptical sine, and the positive value of the radical is 
selected from the condition c E [6, al, b > 0. 

The inequalities connecting R and h if n, c are roots of (3.7) 

0 -< 2yK (h) - nK (A’) < K (R’), n > 0 (3.9) 

result from the properties of elliptic functions and Poisson's ratio K(h)> 0, T = F(q,h’),z 

0, 8’ h, h’f < K (h’), Y > 0 and (3.8). The function K(h) increases monotonically from 'I$ to 
m in the interval 0< h< 1, the function K(h’) decreases monotonically from 00 to ‘J,n, 
consequently, the function T (la, k) also increases monotonically for any n 20, changing 

sign for n>i. It hence follows that for a fixed n>l a single root 51 = h, exists 

for the equation T(n,A.) = 0. Since the inequality (3.9) is satisfiedintheinterval [h,, hI+J 
for n 20, where h, = 0, then for all b ~(0,1) a unique value n = E {ZyK(h) K-l&‘)}, can 
be determined from (3.9) except for the point h = h,, and then an appropriate c according 
to (3.81, i.e., roots of Eq.(3.7) can be found. 

Remark 3. For all n>1 Eq.(3.?) has two roots n,c= B and II- 1,c= b at the points 
%=&. 

It follows from the formula for n and the monotonicity of the growth of the function 
K(h) that the quantity n increases without limit in the interval oca<i, running sucess- 

ively through the values 0, 1, 2, . 1 . * It follows from the monotonicity of the growth 
of the elliptic sine in (3.0) in the interval h,<h,<h,+, from .r;n (0,h;) = 0 to sn [K (%,lf, 
h&+,1 = 1 that for each n >- 0 the quantity c decreases monotonically from a (for n-a 1) 
to b in ianr a,+,1 _ 

The general solution 12.1) of problem (1.11, (3.1) has the form Q(z) = Adz, the 
function X(z) is determined in (3.6); according to (1.51, (1.101, (2.2) and (2.41, r = 2, 
_q :z 2, N _: fj 

a2 (2) = P, (2) + i& (z) (2” -.- uy~z (2’ - vpz (3.10) 

The four conditions at infinity (1.2) and two conditions of boundedness of the solution 
@2'(c)= 0, Qz"(c),= 0 yield the following system of equations in the six arbitrary constants 
in (3.10) 

Cz i- iD, = f exp (ic + V,inn) [v~u~- + 2+e- (x + 1)-r] 
(C i j&) (CZ i- iD,) + Cl f iD, = --‘l,in-LF exp (i< + ~0,) 

(a' - C2) P, (C) -t Y, (C) Q2 (C) = 0, 0, = @ f 'l,nn 

(a2 - c") P,' (4 + Y, (C)Q*‘ (4 + c (a2 - P) YI-' (c) Qz (c) = 0 

(3.11) 

c=arcsin 

The contact stresses on the slip and adhesion sections have the form (j = 1,2) 

where the integrals 
We examine the 

$3 tx) E (-lY+‘yl (I)qpp (2)~ 5 E Lj; 4% (CT) = --Y* (5) ‘po (I), 
x E i-b, 61 

(3.12) 

are evaluated in the Cauchy principal value sense. 
case o,= = em = 0 in greater detail. We find from system (3.11) 

CO = I-CIA, + D,Y(c)sirP cl 
D, = - ICrY, (c)co@ 6 +&A,] 

(3.13) 

Cl = F, sin (6 + O,), D, = --F, cos (t; f f3,), C, = D, = 0 
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F, = ‘II (nc)‘F, A1 = Z sin* 6 + b'cos*<, 
A, = t cos’ 6 + a’ sin’ 6 

Asymptotic forms of the stresses at the points of separation of the boundary condition 
are expressed according to (3.12) and (3.13) by the formulas 

u,, (z) = KI (+b) I2n (-b + cc)]-‘/* + u. (&b) + 0 (,vq). 
x-+&b+0 

(0” - ir,,) (x) = u. (+a) - iKII (&b) I2n (b 7 ~)I-‘~* + 

0 (V/b T 49 x+_tbTO 
uy (x) = KI (&-a) I2n (a + x)1-“* + 0 (1/a + x), x + +a 7 0 
K~(+b)=(x + 1)(x - I)-‘Zh(_fb), 

KI1 (+ b) = f (x + 1) cF, ‘I/nA, (s&)-~ sin (6, T 0 - l/*nn) 

RI (f a) = f 2F, 1/% sin (6, + 8 + r/,nn), 

6,=arctg (GfE), 6,=arctg(fvE 

(3.14) 

(UC. (+ ‘4 are certain constants). 
By virtue of (1.2) and (3.141, the derivative of the normal displacement of the free 

half-plane boundary at the stamp edges has the form 

2~ (x + 1)'~' (x) = -VrKI (+a) 12x (-a -t_ x)1-‘/’ + (3.15) 

O(f-a_tx), x++a+O -- 

For the contact stresses on the slip sections to be compressive, it is necessary to 
satisfy four inequalilities K~(fs)<o, K1(f b)<O, which we write in the following form by 
taking account of (3.14) 

sin I&S, + (--1)j (0 _+ Vgsn)l < 0, j = 1, 2; n > 0 

They generate two sequences of conditions constraining the direction of the forces X,‘, 
Y, and the ratio of the lengths of the slip and adhesion sections 

18 - VP n I Q 6,, n = 1, 5, 9, . . .; I e - */,n I < 6,, n = (3.17) 
3,7,11, . . . 

Here 6,=6, for c< v/;;r;,6, = 6,, for c> 1/a, the first inequality corresponds to 
separation and the second to stamp impression into the half-plane. Inequalities (3.161, in 
addition to (3.17), allow solutions at a discrete set of points h = b, for all even n>O, 
but they do not introduce anything new. 

Indeed, for h= L, the equation T(n,b)= 0 has two roots with even and odd n according 
to Remark 3, which determine the identical solution of the contact problem by the uniqueness 
theorem, and all odd n are already in (3.17). 

It follows from,(3.17) that the solution of problem (3.1) for uxo =.E,- =O in intervals 

h E (L h,,+J, s = 0, 1, 2, . . .I cannot be realized mechanically for any 8. The set of values of 
a for which the solution has mechanical meaning in the neighbourhood of the points -&z,_tb 
agrees completely with the set of segments [&,&+J only for e =Vp, n = 1,5,..., and fl = 

%n, n = 3,7,..., i.e., for X,' =O. As the force deviates from the normal to either side, 
each n-th segment is contracted monotonically, being transformed for IX,’ I = IY,’ I at the 
point L,* governed by the equation 2yK(L,*)-((n i-l/J K'(h,*) =O. For IX,’ I> IY,’ I the 
problem under consideration has no solution. 

The question occurs as to whether conditions (3.17) are sufficient for the inequality 
su (.* 0) < 0 to be satisfied for all ZEL. Since sufficiency is strictly well-founded in the 
problem with one detached section /2/ and the sections L,,L, are small compared Ml with 
(according to numerical calculations &= 0.999, &ir= i-!1.26.1O-', the asymptotic form & has the 
form )i,,=i -Seexp(--'/,~'nn)). then according to Saint-Venant's principle the influence of the 
stress oy(r.O) for ZE L, on the value of ou(z,O) for +E L, is small and the sufficiency 
of conditions (3.17) obviously holds. 

The constraints (3.17) uniquely define the allowable adhesion sections I--b. bl but the 
whole stamp base [+*, b,*l can be broader than the contact section I--rr, 4 because of the 
intervals S'. 

Indeed, let the parameters 9 and I satisfy condition (3.17). If i&=81 or inequality 
(3.17) is strict for IS.= 6,, then KI(+o)'<O and according to (3.15) the intervals Ial*, b.*l 
and (-~,a) should agree, otherwise v(z)> v(a) for .? E S' near fo. If .ilo= 4 and equality 
(3.17) is satisfied, then the intensity factor RI vanishes atthepoints (~,-a, or at both 
these points in the case of normal forces, the adjacency of the stamp to the half-plane will 
be smooth there, and under the condition u(z)<~(o).IE S' the stamp base can overlap the 
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interval I--a, al. 
Following /2/, equations can be written down for exact values of the ultimately large 

parameters at* and b,* but they will differ slightly from the appropriate parameters for the 
stamp /2/ with one adhesion section z~IO.261 and one slip section z E I2b,o -I- bl. This also 
follows from Saint-Venant's principle and,the estimate l-J.,,<10-8 for all n.>i. Inparticular, 
for a normal separating force O='/,n, as in /2/ al* = -co, b,* = m for 6,= 0 and n=i. This 
means that if the sections of L reached a certain threshold value (ba-I= h,) on increasing, 
then both detached cracks become globally unstable. In view of the monotonic growth of the 
factor K,, as a function of 0-b for ba-’ = h, , the process being started of their advance- 
ment for a constant force I',' results in total separation of the stamp. 

During its development on the path to global instability (ba-1 > kl) the crack can, 
theoretically, arbitrarily pass many deceleration states. Indeed, if 8,= 6, or the strict 
inequality (3.17) holds for 6,= 61, then for a sufficiently large quantity F both detached 
cracks are developed A', (*b)<O. If Eq.(3.17) is satisfied for 6,= 61, then the intensity 
factors Km and K, vanish at the points b or --band for X1'= 0 simultaneously at either. 

The last case of a normal force is especially interesting since here both cracks become 
absolutely stable on advancing to points governed by a denumerable set of parameters 

e = S/,n, s = 0, 1, . . . 
~=&.a 

for tl= l/,n and J. = ho,, for 
This problem was actually examined in /3/, but its mechanical formulation, method of 

solution and analysis were different. It was assumed that the stamp [-~,a] is impressed in 
a half-plane by a normal force under conditions of prelimiting friction on [-b,b] and slip 
outside this interval. The replacement of the prelimiting friction conditions by total 
adhesion conditions made in /3/ is legitimate in principle, but requires verification that 
the inequality 1 zw,/ C --pOv, z E I-b,b], y = 0, is satisfied after the problem has been solved, 
where p>O is the coefficient friction. 

Although any problem of prelimiting friction has a non-denumerable set of solutions, 
none of them is realized in this case. This is indicated indirectly even in /3/ itself (the 
sign of uu (z, 0) is variable for z~ I--b,bl) and in /6/. Tensile stresses are naturally 
allowable in problem (1.1) when studying detachment at M, and it follows from (3.12) that 
they always occur in the range 1--b, bl. 

The method of solution /3/ cannot be extended to the general case of the problem (3.1). 
References to other papers in which is method was used can be found in /6, 7/. 
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